skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Treil, Sergei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. null (Ed.)
  3. null (Ed.)
    Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $$d$$ perturbations $$A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$$, $${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$$, with $${\operatorname{Ran}}{\textbf{B}}$$ being cyclic for $$A$$, parametrized by $$d\times d$$ Hermitian matrices $${\boldsymbol{\alpha }}$$, the singular parts of the spectral measures of $$A$$ and $$A_{\boldsymbol{\alpha }}$$ are mutually singular for all $${\boldsymbol{\alpha }}$$ except for a small exceptional set $$E$$. It was shown earlier by the 1st two authors, see [4], that $$E$$ is a subset of measure zero of the space $$\textbf{H}(d)$$ of $$d\times d$$ Hermitian matrices. In this paper, we show that the set $$E$$ has small Hausdorff dimension, $$\dim E \le \dim \textbf{H}(d)-1 = d^2-1$$. 
    more » « less